IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation
نویسندگان
چکیده
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
منابع مشابه
In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter
Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...
متن کاملG-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in th...
متن کاملSpecific interactions of distamycin with G-quadruplex DNA.
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the te...
متن کاملThe different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures.
Demonstration of the existence of G-quadruplex structures in telomeres of Stylonychia macronuclei and in the promoter of c-myc in human cells has validated these secondary DNA structures as potential targets for drug design. The next important issue is the selectivity of G-quadruplex-interactive agents for the different types of G-quadruplex structures. In this study, we have taken an important...
متن کاملCationic Porphyrin Induced a Telomeric DNA to G-Quadruplex Form in Water
The formation of the DNA G-quadruplex is induced by the addition of a novel porphyrin carrying four cationic tethers. Circular dichroism spectroscopy reveals that the porphyrin binds to Tetrahymena telomeric repeat to form G-quadruplex under stabilizing-cation-deficient and no buffer conditions.
متن کامل